

BÖHLER SKWAM-IG

Solid wire, high alloyed, stainless

Classifications

EN ISO 14343-A EN 14700

G Z17 Mo

S Fe 7

Characteristics and typical fields of application

GMAW solid wire of type 17% Cr 1% Mo for surfacing on sealing faces of gas, water and steam valves and fittings made from unalloyed or low-alloy steels, for service temperatures up to 450°C. Excellent anti-friction properties. The weld deposit is still machinable. Scaling resistant up to 900°C. SKWAM-IG wire is also suited for joint welding of stainless ferritic steels containing 13-18% chromium, above all for applications where uniform colour of the base metal and weld seam is required. For thick-walled components it is recommendable to use BÖHLER A 7-IG wire for the filler passes in order to improve the ductility behaviour of the joint weld, SWAM-IG wire for the cover pass.

Base materials

surfacings:

all weldable backing materials, unalloyed and low-alloyed.

joint welds:

corrosion resistant Cr-steels as well as other similar-alloyed steels with C-contents up to 0.20% (repair welding). Be careful with dilution and welding technology.

Typical analysis of solid wire (wt%)											
	С	Si	Mn		Cr	Мо		Ni			
Gew-%	0,20	0,65	0,55		17,0		1,1),4		
Mechanical properties of all-weld metal											
Condition	Yield strength R_e	Tensile strength R _m		Elongation A (L ₀ =5d ₀)		Impact work ISO-V KV J					
	MPa	MPa		%		+20°	С	ΗB			
u								ca 3	350		
u – 1. layer								400	- 500		
u – 2. layer								380	- 450		
u – 3. layer								330	- 400		
а	≥ 500	≥ 700		≥ 15				200			

u untreated, as-welded – base metal mild steel - shielding gas Ar + 8- 10 % CO₂

a annealed, 720°C/2 h – shielding gas Ar + 8- 10 % CO₂

The hardness of the deposit is greatly influenced by the degree of dilution with the base metal (depending on the relevant welding conditions) and by its chemical composition. As a general rule it can be observed that the higher the degree of dilution and the C-content of the base metal, the higher the deposit hardness. Gas mixtures containing CO_2 result in higher deposit hardness then CO_2 -free gas mixtures.

Operating data

Polarity:	Shielding gases:	ø (mm)
DC (+)	Argon + 8 – 10% CO ₂	1.2
	Argon + 3% O_2 or max. 5% O_2 (shielding gas depends on the application)	1.6

All information provided is based upon careful investigation and intensive research.

However, we do not assume any liability for correctness and information is subject to change without notice.

böhlerwelding by voestalpine

BÖHLER SKWAM-IG

Solid wire, high alloyed, stainless

Preheating to +250- 450°C for joint welding operations. Annealing at +650- 750°C improves the toughness of the weld deposit.

Approvals

KTA 1408.1 (08044.), DB (20.014.19), SEPROZ, CE